\\
. ')gerDA%TER

Onithe agreement of external validation parameters for linear
regression QSAR models
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ABSTRACT

The evaluation of linear regression QSAR models perfonnances both in fitting and external p|

leave-one-out (LOO) Q2 internal is well

, is of pivotal imp
dlfferenl exlernal validation parameters have been

[]12]. While

proposed in the last decade: Q2 (Shi) [3] , Q%, (Schuurmann) 4], Q% (Consonni) [5][6] r1m (Roy) [7] and the Tropsha-Golbraikh [8] method.

of a model p

These parameters usually are in making one

, but doubts arise when they give contradictory

results. In these cases the QSAR model developer should understand which one of the aforemenlloned parameters is “the best”. However this
is not an easy task, mainly because no one of these parameters could be considered “the best” in every situation. We are thus looking for a

simpler method to evaluate the extemal predictivity of the models, i ly on the set

In our opinion, the simplest method

consists in the quantification of the similarity among the experimental data of external test set versus the corresponding values calculated by

the model.

In this study the concordance correlation coefficient [9] has been used as a reference and we have evaluated the number of contradictory and

greeing results on

by means of 210.000 simulated datasets. A wide range of possible scenarios has been generated

and concemmg the more reallstlc ones, 95% of agreement has been found among the concordance correlation coefficient and all the

together. Our prop is the most p|

y among those analyzed. We have verified

that disagreements among results is related to two possible situations: a) the external data points are well predicted (good matching), while at
least one of the validation parameters rejects the model (rare), b) the matching is not good and one or more validation parameters accept the

model ( ). The second is more dang:

external

for QSAR models, thus a deeper analysis of the results is suggested
Our method verified also on real models, has been proposed as a tool to be used in addition, or even in i

I ive, to the

MATERIAL AND METHODS
Datasets are g at random, a using a custom simulation software. Datasets sizes span from 108
elements for the general parameter performances to 24-1536 for the realistic ones (210.000 simulated datasets). Prediction set
proportions for the realistic sizes are: 1/2, 1/4 and 1/8. Parameter performances are calculated over different level of noise in both the
training and prediction set responses and different levels of sy ic shifts in the pi set

Real datasets have been also taken from lif [10-14] to pare the different

in real QSAR

to find out this kind of critical models with doubtful predictivity

EXTERNAL VALIDATION PARAMETERS

AGREEMENT AMONG THE PARAMETERS - DATASETS OF REALISTIC SIZE

Proportion of agreement in accepting or rejecting a
model

Proportion of total accepted models
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GENERAL PERFORMANCES USING BIG SIMULATED DATASETS
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wedys|  Abscissa: dataset size Overall, the here proposed concordance

datasets are generated. The concordance
correlation coefficient is the most restrictive.

It is relatively rare that ConcCo accepts “critical” models
rejected by one ore more of the other parameters.

ConcCo = concordance
correlation coefficient

correlation coefficient (ConcCo) proved to be

il
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proved to be the the most restrictive parameter in accepting models using big simulated datasets.

v ConcCo is in good agreement (96%) with the other parameters when datasets of realistic sizes are simulated. In the remaining

when the

are

, ConcCo is the most restrictive in almost all the cases.

v ConcCo is the most reliable (stable) parameter in the studied real datasets. Therefore, when the validation parameters disagree, ConcCo

helps to make a decision whether a model should be accepted or not as predictive.

v Paper submitted to J. Chem. Inf. Mod.

ConcCo = concordance comelation coefficient, r'm-ExPy = experimental
values on the abscissa azis, PmEyPx = experimental values on the ordinate
axis, G&T = Golbraikh and Tropsha method.

The same results as above are observed for ConcCo
while almost all of the other validation parameters have
larger variations.
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